首页 > 程序开发 > 软件开发 > 其他 >

树状数组模板

2017-04-21

树状数组模板:树状数组是一个查询和修改复杂度都为log(n)的数据结构。主要用于查询任意两位之间的所有元素之和,但是每次只能修改一个元素的值。

树状数组模板:树状数组是一个查询和修改复杂度都为log(n)的数据结构。主要用于查询任意两位之间的所有元素之和,但是每次只能修改一个元素的值。

经过简单修改可以在log(n)的复杂度下进行范围修改,但是这时只能查询其中一个元素的值(如果加入多个辅助数组则可以实现区间修改与区间查询)。

这种数据结构(算法)并没有C++和Java的库支持,需要自己手动实现。竞赛中被广泛的使用。树状数组和线段树很像,但能用树状数组解决的问题,基本上都能用线段树解决,而线段树能解决的树状数组不一定能解决。相比较而言,树状数组效率要高很多。

假设数组a[1..n],那么查询a[1]+…+a[n]的时间是log级别的,而且是一个在线的数据结构,支持随时修改某个元素的值,复杂度也为log级别。

来观察这个图:
令这棵树的结点编号为C1,C2…Cn。令每个结点的值为这棵树的值的总和,那么容易发现:

C1 = A1
C2 = A1 + A2
C3 = A3
C4 = A1 + A2 + A3 + A4
C5 = A5
C6 = A5 + A6
C7 = A7
C8 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8
…
C16 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10 + A11 + A12 + A13 + A14 + A15 + A16
这里有一个有趣的性质:
设节点编号为x,那么这个节点管辖的区间为2^k(其中k为x二进制末尾0的个数)个元素。因为这个区间最后一个元素必然为Ax,
所以很明显:Cn = A(n – 2^k + 1) + … + An

#include
usingnamespacestd;
intn,m,i,num[100001],t[200001],l,r;//num:原数组;t:树状数组
intlowbit(intx)
{
returnx&(-x);
}
voidchange(intx,intp)//将第x个数加p
{
while(x<=n)
{
t[x]+=p;
x+=lowbit(x);
}
return;
}
intsum(intk)//前k个数的和
{
intans=0;
while(k>0)
{
ans+=t[k];
k-=lowbit(k);
}
returnans;
}
intask(intl,intr)//求l-r区间和
{
returnsum(r)-sum(l-1);
}
intmain()
{
cin>>n>>m;
for(i=1;i<=n;i++)
{
cin>>num[i];
change(i,num[i]);
}
for(i=1;i<=m;i++)
{
cin>>l>>r;
cout<
        
   

相关文章
最新文章
热点推荐