首页 > 程序开发 > 综合编程 > 其他综合 >

使用自己的数据集训练faster-rcnn

2016-09-16

使用自己的数据集训练faster-rcnn。在安装完成caffe后,并且编译完成github上的faster-rcnn python版之后,可以采用自己的数据来训练faster-rcnn了。

在安装完成caffe后,并且编译完成github上的faster-rcnn python版之后,可以采用自己的数据来训练faster-rcnn了。
一,文件修改:
1,在py-faster-rcnn目录下,找到lib/datasets/pascal_voc.py 文件打开逐一修改相应的函数:
如果打算添加中文注释请,在文件开图添加#encoding:utf-8,不然会报错。
以下为修改的细节:

1)、初始化函数init的修改,同时修改类名:

class hs(imdb):
    def __init__(self, image_set, devkit_path=None):  # modified
        imdb.__init__(self, image_set)
        self._image_set = image_set
        self._devkit_path = devkit_path#datasets路径
        self._data_path = os.path.join(self._devkit_path,image_set)   #图片文件夹路径
        self._classes = ('__background__', # always index 0
                         'jyz','fzc','qnq')   #two classes
        self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes))) 
        # form the dict{'__background__':'0','person':'1'}
        self._image_ext = '.jpg'
        self._image_index = self._load_image_set_index('ImageList.txt')
        # Default to roidb handler
        self._roidb_handler = self.selective_search_roidb
        self._salt = str(uuid.uuid4())
        self._comp_id = 'comp4'

        # PASCAL specific config options
        self.config = {'cleanup'     : True,
                       'use_salt'    : True,
                       'use_diff'    : False,
                       'matlab_eval' : False,
                       'rpn_file'    : None,
                       'min_size'    : 16}  #小于16个像素的框扔掉

        assert os.path.exists(self._devkit_path), \
                'VOCdevkit path does not exist: {}'.format(self._devkit_path)
        assert os.path.exists(self._data_path), \
                'Path does not exist: {}'.format(self._data_path)

2)修改image_path_from_index函数的修改:

def image_path_from_index(self, index): #modified
    """
    Construct an image path from the image's "index" identifier.
    """
    image_path = os.path.join(self._data_path,index +'.jpg')
    assert os.path.exists(image_path), \
            'Path does not exist: {}'.format(image_path)
    return image_path

3)修改_load_image_set_index函数:

def _load_image_set_index(self,imagelist): # modified
    """
    Load the indexes listed in this dataset's image set file.
    """
    # Example path to image set file:
    # self._devkit_path + /VOCdevkit2007/VOC2007/ImageSets/Main/val.txt
    image_set_file = os.path.join(self._devkit_path, imagelist)
    assert os.path.exists(image_set_file), \
            'Path does not exist: {}'.format(image_set_file)
    with open(image_set_file) as f:
        image_index = [x.strip() for x in f.readlines()]
    return image_index

4)修改_load_pascal_annotation(self, index):

def _load_pascal_annotation(self, index):    #modified
    """
    Load image and bounding boxes info from XML file in the PASCAL VOC
    format.
    """
    filename = os.path.join(self._devkit_path, 'Annotations', index + '.xml')
    tree = ET.parse(filename)
    objs = tree.findall('object')
    if not self.config['use_diff']:
        # Exclude the samples labeled as difficult
        non_diff_objs = [
            obj for obj in objs if int(obj.find('difficult').text) == 0]
        # if len(non_diff_objs) != len(objs):
        #     print 'Removed {} difficult objects'.format(
        #         len(objs) - len(non_diff_objs))
        objs = non_diff_objs
    num_objs = len(objs)

    boxes = np.zeros((num_objs, 4), dtype=np.uint16)
    gt_classes = np.zeros((num_objs), dtype=np.int32)
    overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32)
    # "Seg" area for pascal is just the box area
    seg_areas = np.zeros((num_objs), dtype=np.float32)

    # Load object bounding boxes into a data frame.
    for ix, obj in enumerate(objs):
        bbox = obj.find('bndbox')
        # Make pixel indexes 0-based
        x1 = float(bbox.find('xmin').text)
        y1 = float(bbox.find('ymin').text)
        x2 = float(bbox.find('xmax').text)
        y2 = float(bbox.find('ymax').text)
        cls = self._class_to_ind[obj.find('name').text.lower().strip()]
        boxes[ix, :] = [x1, y1, x2, y2]
        gt_classes[ix] = cls
        overlaps[ix, cls] = 1.0
        seg_areas[ix] = (x2 - x1 + 1) * (y2 - y1 + 1)

    overlaps = scipy.sparse.csr_matrix(overlaps)

    return {'boxes' : boxes,
            'gt_classes': gt_classes,
            'gt_overlaps' : overlaps,
            'flipped' : False,
            'seg_areas' : seg_areas}

5)main下面修改相应的路径:


if __name__ == '__main__':
    from datasets.hs import hs
    d = hs('hs', '/home/panyiming/py-faster-rcnn/lib/datasets')
    res = d.roidb
    from IPython import embed; embed()

2,在py-faster-rcnn目录下,找到lib/datasets/factory.py 并修改,修改后的文件如下:

# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------

"""Factory method for easily getting imdbs by name."""

__sets = {}

from datasets.hs import hs
import numpy as np

# # Set up voc__ using selective search "fast" mode
# for year in ['2007', '2012']:
#     for split in ['train', 'val', 'trainval', 'test']:
#         name = 'voc_{}_{}'.format(year, split)
#         __sets[name] = (lambda split=split, year=year: pascal_voc(split, year))
#
# # Set up coco_2014_
# for year in ['2014']:
#     for split in ['train', 'val', 'minival', 'valminusminival']:
#         name = 'coco_{}_{}'.format(year, split)
#         __sets[name] = (lambda split=split, year=year: coco(split, year))
#
# # Set up coco_2015_
# for year in ['2015']:
#     for split in ['test', 'test-dev']:
#         name = 'coco_{}_{}'.format(year, split)
#         __sets[name] = (lambda split=split, year=year: coco(split, year))

name = 'hs'
devkit = '/home/panyiming/py-faster-rcnn/lib/datasets'
__sets['hs'] = (lambda name = name,devkit = devkit: hs(name,devkit))

def get_imdb(name):
    """Get an imdb (image database) by name."""
    if not __sets.has_key(name):
        raise KeyError('Unknown dataset: {}'.format(name))
    return __sets[name]()

def list_imdbs():
    """List all registered imdbs."""
    return __sets.keys()

二、模型的选择、训练以及测试:
1.预训练模型介绍
在github官网上的py-faster-rcnn的编译安装教程中有一步如下:

cd $FRCN_ROOT
./data/scripts/fetch_faster_rcnn_models.sh

执行完成之后会在/data/scripts下产生压缩文件faster_rcnn_models.tgz,解压得到faster_rcnn_model文件夹,faster_rcnn_model文件夹下面是作者用faster rcnn训练好的三个网络,分别对应着小、中、大型网络,大家可以试用一下这几个网络,看一些检测效果,他们训练都迭代了80000次,数据集都是pascal_voc的数据集。

可以通过执行如下命令下载Imagenet上训练好的通用模型:

cd $FRCN_ROOT
./data/scripts/fetch_imagenet_models.sh

执行完成之后会在/data/scripts下产生压缩文件imagenet_models.tgz,解压得到imagenet_models文件夹,imagenet_model文件夹下面是在Imagenet上训练好的通用模型,在这里用来初始化网络的参数.

2.修改模型文件配置
模型文件在models下面对应的网络文件夹下,在这里我用中型网络的配置文件修改为例子
比如:我的检测目标物是3类 ,那么我的类别就有两个类别即 background 和 3类目标
因此,首先打开网络的模型文件夹,打开train.prototxt修改的地方重要有三个
分别是个地方

首先在data层把num_classes 从原来的21类 20类+背景 ,改成 4类 3类目标+背景
接在在cls_score层把num_output 从原来的21 改成 4
RoI Proposal下有个名为name: 'roi-data'的层,将其num_classes修改为4
在bbox_pred层把num_output 从原来的84 改成16, 为检测类别个数乘以4,

如果你要进一步修改网络训练中的学习速率,步长,gamma值,以及输出模型的名字,需要在同目录下的solver.prototxt中修改。

3.启动Fast RCNN网络训练

python ./tools/train_net.py --gpu 1 --solver models/hs/faster_rcnn_end2end/solver.prototxt --weights data/imagenet_models/VGG_CNN_M_1024.v2.caffemodel --imdb hs --iters 80000 --cfg experiments/cfgs/faster_rcnn_end2end.yml

命令解析:
1)、train_net.py是网络的训练文件,之后的参数都是附带的输入参数。
3)、–gpu 代表机器上的GPU编号,如果是nvidia系列的tesla显卡,可以在终端中输入nvidia-smi来查看当前的显卡负荷,选择合适的显卡。
4)、–solver 代表模型的配置文件,train.prototxt的文件路径已经包含在这个文件之中。
5)、-weights 代表初始化的权重文件,这里用的是Imagenet上预训练好的模型,中型的网络我们选择用VGG_CNN_M_1024.v2.caffemodel,此步可以省略,省略后会自动初始化。
6)、–imdb 这里给出的训练的数据库名字需要在factory.py的_sets中,我在文件里面有。_sets[‘hs’],train_net.py这个文件会调用factory.py再生成hs这个类,来读取数据。

4.启动Fast RCNN网络检测
可以参考tools下面的demo.py 文件,来做检测,并且将检测的坐标结果输出到相应的txt文件中。

相关文章
最新文章
热点推荐