首页 > 程序开发 > 综合编程 > 其他综合 >

CS231n ConvNets 卷积神经网络与计算机视觉 8 手把手实现神经网络分类

2016-05-30

本章将实现一个简单的两层神经网络,主要分两步走: 1 实现线性分类器 2 改变成神经网络 1 生成数据 我们先生成一个螺旋性的数据集,Python代码: N = 100 number of points per clas

本章将实现一个简单的两层神经网络,主要分两步走:
1. 实现线性分类器
2. 改变成神经网络

1 生成数据

我们先生成一个螺旋性的数据集,Python代码:

N = 100 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X = np.zeros((N*K,D)) # data matrix (each row = single example)在二维平面内的300个点
y = np.zeros(N*K, dtype='uint8') # class labels整数形式
for j in xrange(K):
  ix = range(N*j,N*(j+1))
  r = np.linspace(0.0,1,N) # radius
  t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta第一个linspace意为产生100个数,random是为了让这些角度分开
  X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]#c_合并列
  y[ix] = j
# lets visualize the data:
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)#c代表颜色,s:scalar 大小 cmap:colormap改变了原始的颜色映射

结果为
这里写图片描述
其中如果没有np.random.randn(N)*0.2得到是
这里写图片描述

2 预处理数据

这里因为比较简单,不需要进行预处理,预处理方法在这里

3 训练Softmax线性分类器

3.1 初始化

根据之前softmax的知识,其损失函数为cross-entropy loss其中需要参数w和b,我们需要首先初始化参数。

# initialize parameters randomly
W = 0.01 * np.random.randn(D,K)#每一类需要两个w(因为在2维空间)2x3
b = np.zeros((1,K))#每一类需要一个b 1x3

3.2 计算类别得分

# compute class scores for a linear classifier
scores = np.dot(X, W) + b#300*2乘2*3得到300行3列的矩阵代表每个数据在三类中的得分

300x2的X乘2x3W得到300行3列的矩阵代表每个数据在三类中的得分

3.3 建立损失函数

损失函数的建立是整个模型中重要的一节也是很难的一节,这里softmax的损失函数是cross-entropy loss,其公式如下,我们曾经从信息论和概率论角度来考虑他的含义,原文点这里
Li=?log??efyi∑jefj??
概率论角度的理解比信息论角度要更直观些,括号内就是滴i类的概率,求-log就类似与求最大似然中的步骤,上面的f就是我们之前计算的得分函数。
括号内的分子是正确类别的得分,分母是所有类别的总得分,这样整个括号内的内容就是对正确类别的预测的概率,如果预测的是1那么完全正确,-log(1)=0,反之就会变成无穷大。所以让损失最小就可以得到最接近真实值的预测值。
另外loss函数有两部分 除了上面还有regression完整的结构如下:
L=1N∑iLi??????????data loss+12λ∑k∑lW2k,l??????????????????regularization loss
首先我们先计算每个样本属于各个类别的概率:

# get unnormalized probabilities
exp_scores = np.exp(scores)#这个score就是前面计算的300*3的矩阵
# normalize them for each example
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)#注意这里面的参数axis和keepdims

现在我们已经有了300个样本属于每一类的概率,这是一个300*3的矩阵。
现在可以计算-log概率了:

corect_logprobs = -np.log(probs[range(num_examples),y])#这里是选择了正确的那一列的概率,然后进行了-log运算 得到300x1个概率

得到的上一步结果是一列向量,进一步计算data loss 并加入 regression loss

# compute the loss: average cross-entropy loss and regularization
data_loss = np.sum(corect_logprobs)/num_examples#300个样本的得分平均值
reg_loss = 0.5*reg*np.sum(W*W)#reg是惩罚因子lambda
loss = data_loss + reg_loss

初始值我们是随便给的所以得到的预测的准确率可能是1/3,所以初始的loss可能是-log(1/3).

3.4 计算反向传播的梯度

这里又是一大难点,但是只要知道反向传播就是通过链式求导法则,慢慢来就可以得到结果,为了便于表示我们引入概率p:
pk=efk∑jefjLi=?log(pyi)
损失函数只利用了正确类别的预测概率,所以我们我们需要计算的梯度公式(对于一个样本)如下:
?L?w=?L?p?p?f?f?w+λw
经过计算可得到下列结果:
?Li?fk=pk?1(yi=k)
这就是说如果我们某一时刻计算的p是 [0.2, 0.3, 0.5],那么得分函数的梯度就是df = [0.2, -0.7, 0.5],我们可以直观的理解这一结果,沿着梯度的方向l是增大的,df的意思就是增加中间的得分,减小两侧的得分l就会减小。
下面是程序:

dscores = probs
dscores[range(num_examples),y] -= 1
dscores /= num_examples#300×3的矩阵
dW = np.dot(X.T, dscores)#内积的形式得到的是2×3的矩阵
db = np.sum(dscores, axis=0, keepdims=True)
dW += reg*W # don't forget the regularization gradient

3.5 更新参数

# perform a parameter update
W += -step_size * dW
b += -step_size * db#注意要向着负梯度方向更新噢

3.6 整合

#Train a Linear Classifier

# initialize parameters randomly
W = 0.01 * np.random.randn(D,K)
b = np.zeros((1,K))

# some hyperparameters
step_size = 1e-0
reg = 1e-3 # regularization strength

# gradient descent loop
num_examples = X.shape[0]
for i in xrange(200):

  # evaluate class scores, [N x K]
  scores = np.dot(X, W) + b 

  # compute the class probabilities
  exp_scores = np.exp(scores)
  probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # [N x K]

  # compute the loss: average cross-entropy loss and regularization
  corect_logprobs = -np.log(probs[range(num_examples),y])
  data_loss = np.sum(corect_logprobs)/num_examples
  reg_loss = 0.5*reg*np.sum(W*W)
  loss = data_loss + reg_loss
  if i % 10 == 0:
    print "iteration %d: loss %f" % (i, loss)

  # compute the gradient on scores
  dscores = probs
  dscores[range(num_examples),y] -= 1
  dscores /= num_examples

  # backpropate the gradient to the parameters (W,b)
  dW = np.dot(X.T, dscores)
  db = np.sum(dscores, axis=0, keepdims=True)

  dW += reg*W # regularization gradient

  # perform a parameter update
  W += -step_size * dW
  b += -step_size * db

我们得到的结果是

iteration 0: loss 1.096956
iteration 10: loss 0.917265
...........
iteration 180: loss 0.786331
iteration 190: loss 0.786302

实际上运行到420次的时候得到最小的值

iteration 410: loss 0.762752
iteration 420: loss 0.762751

我们可以根据公式估算准确率

# evaluate training set accuracy
scores = np.dot(X, W) + b
predicted_class = np.argmax(scores, axis=1)#返回最大值的列标
print 'training accuracy: %.2f' % (np.mean(predicted_class == y))

得到的结果是0.49
我们将结果可视化
这里写图片描述

4 训练神经网络

以上结果可以看出线性分类器对非线性的分类结果不好,我们需要现在建立一个一层隐含层含100个隐藏神经单元的神经网络,那么这是一个两层神经网络,我们需要两套参数:
这里写图片描述

4.1 初始化数据:

# initialize parameters randomly
h = 100 # size of hidden layer=100个神经单元
W = 0.01 * np.random.randn(D,h)#2*100个
b = np.zeros((1,h))#100个
W2 = 0.01 * np.random.randn(h,K)#100*3个
b2 = np.zeros((1,K))#3个

4.2 先前计算得分

一层一层剥开神经网络:
S=max(0,wx+b)×w2+b2

# evaluate class scores with a 2-layer Neural Network
hidden_layer = np.maximum(0, np.dot(X, W) + b) # note, ReLU activation如果不理解画一个神经网络连接下就行了
scores = np.dot(hidden_layer, W2) + b2

4.3 计算反向梯度

依旧是链式求导

这里损失函数对得分函数的求导和前面是一样的,所以只需要按照4.2中的公式S=max(0,wx+b)×w2+b2计算s对参数们的导数即可
w2和b2的梯度

# backpropate the gradient to the parameters
# first backprop into parameters W2 and b2
dW2 = np.dot(hidden_layer.T, dscores)
db2 = np.sum(dscores, axis=0, keepdims=True)

隐含层的梯度,注意经过激活函数的时候如果小于0那么梯度就直接等于0了

dhidden = np.dot(dscores, W2.T)
# backprop the ReLU non-linearity
dhidden[hidden_layer <= 0] = 0

计算w,b梯度

# finally into W,b
dW = np.dot(X.T, dhidden)
db = np.sum(dhidden, axis=0, keepdims=True)

这就算弄完了整合下:

# initialize parameters randomly
h = 100 # size of hidden layer
W = 0.01 * np.random.randn(D,h)
b = np.zeros((1,h))
W2 = 0.01 * np.random.randn(h,K)
b2 = np.zeros((1,K))

# some hyperparameters
step_size = 1e-0
reg = 1e-3 # regularization strength

# gradient descent loop
num_examples = X.shape[0]
for i in xrange(10000):

  # evaluate class scores, [N x K]
  hidden_layer = np.maximum(0, np.dot(X, W) + b) # note, ReLU activation
  scores = np.dot(hidden_layer, W2) + b2

  # compute the class probabilities
  exp_scores = np.exp(scores)
  probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # [N x K]

  # compute the loss: average cross-entropy loss and regularization
  corect_logprobs = -np.log(probs[range(num_examples),y])
  data_loss = np.sum(corect_logprobs)/num_examples
  reg_loss = 0.5*reg*np.sum(W*W) + 0.5*reg*np.sum(W2*W2)
  loss = data_loss + reg_loss
  if i % 1000 == 0:
    print "iteration %d: loss %f" % (i, loss)

  # compute the gradient on scores
  dscores = probs
  dscores[range(num_examples),y] -= 1
  dscores /= num_examples

  # backpropate the gradient to the parameters
  # first backprop into parameters W2 and b2
  dW2 = np.dot(hidden_layer.T, dscores)
  db2 = np.sum(dscores, axis=0, keepdims=True)
  # next backprop into hidden layer
  dhidden = np.dot(dscores, W2.T)
  # backprop the ReLU non-linearity
  dhidden[hidden_layer <= 0] = 0
  # finally into W,b
  dW = np.dot(X.T, dhidden)
  db = np.sum(dhidden, axis=0, keepdims=True)

  # add regularization gradient contribution
  dW2 += reg * W2
  dW += reg * W

  # perform a parameter update
  W += -step_size * dW
  b += -step_size * db
  W2 += -step_size * dW2
  b2 += -step_size * db2

结果是:

iteration 0: loss 1.098744
iteration 1000: loss 0.294946
iteration 2000: loss 0.259301
iteration 3000: loss 0.248310
iteration 4000: loss 0.246170
iteration 5000: loss 0.245649
iteration 6000: loss 0.245491
iteration 7000: loss 0.245400
iteration 8000: loss 0.245335
iteration 9000: loss 0.245292

估计结果:

# evaluate training set accuracy
hidden_layer = np.maximum(0, np.dot(X, W) + b)
scores = np.dot(hidden_layer, W2) + b2
predicted_class = np.argmax(scores, axis=1)
print &#39;training accuracy: %.2f&#39; % (np.mean(predicted_class == y))

得到98%的准确率
可视化结果:
这里写图片描述

相关文章
最新文章
热点推荐