首页 > 程序开发 > Web开发 > Python >

使用python中的matplotlib进行绘图分析数据

2014-07-15

matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中。 它的文档相当完备,并且 Gallery页面 中有上

matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中。

它的文档相当完备,并且 Gallery页面 中有上百幅缩略图,打开之后都有源程序。因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定。

Linux下比较著名的数据图工具还有gnuplot,这个是免费的,Python有一个包可以调用gnuplot,但是语法比较不习惯,而且画图质量不高。

而 Matplotlib则比较强:Matlab的语法、python语言、latex的画图质量(还可以使用内嵌的latex引擎绘制的数学公式)。


快速绘图\

matplotlib的pyplot子库提供了和matlab类似的绘图API,方便用户快速绘制2D图表。例子:

# coding=gbk
'''
Created on Jul 12, 2014
python 科学计算学习:numpy快速处理数据测试
@author: 皮皮
'''
import string
import matplotlib.pyplot as plt  
import numpy as np

if __name__ == '__main__':    
    file = open(E:machine_learningdatasetshousing_datahousing_data_ages.txt, 'r')
    linesList = file.readlines()
#     print(linesList)
    linesList = [line.strip().split(,) for line in linesList]
    file.close()    
    print(linesList:)
    print(linesList)
#     years = [string.atof(x[0]) for x in linesList]
    years = [x[0] for x in linesList]
    print(years)
    price = [x[1] for x in linesList]
    print(price)
    plt.plot(years, price, 'b*')#,label=$cos(x^2)$)
    plt.plot(years, price, 'r')
    plt.xlabel(years(+2000))
    plt.ylabel(housing average price(*2000 yuan))
    plt.ylim(0, 15)
    plt.title('line_regression & gradient decrease')
    plt.legend()
    plt.show()
\

matplotlib中的快速绘图的函数库可以通过如下语句载入:

import matplotlib.pyplot as plt

pylab模块

matplotlib还提供了名为pylab的模块,其中包括了许多numpy和pyplot中常用的函数,方便用户快速进行计算和绘图,可以用于IPython中的快速交互式使用。

接下来调用figure创建一个绘图对象,并且使它成为当前的绘图对象。

plt.figure(figsize=(8,4))

也可以不创建绘图对象直接调用接下来的plot函数直接绘图,matplotlib会为我们自动创建一个绘图对象。如果需要同时绘制多幅图表的话,可以是给figure传递一个整数参数指定图标的序号,如果所指定序号的绘图对象已经存在的话,将不创建新的对象,而只是让它成为当前绘图对象。

通过figsize参数可以指定绘图对象的宽度和高度,单位为英寸;dpi参数指定绘图对象的分辨率,即每英寸多少个像素,缺省值为80。因此本例中所创建的图表窗口的宽度为8*80 = 640像素。

但是用工具栏中的保存按钮保存下来的png图像的大小是800*400像素。这是因为保存图表用的函数savefig使用不同的DPI配置,savefig函数也有一个dpi参数,如果不设置的话,将使用matplotlib配置文件中的配置,此配置可以通过如下语句进行查看:

>>> import matplotlib
>>> matplotlib.rcParams[savefig.dpi]
100

下面的两行程序通过调用plot函数在当前的绘图对象中进行绘图:

    plt.plot(years, price, 'b*')#,label=$cos(x^2)$)
    plt.plot(years, price, 'r')

plot函数的调用方式很灵活,第一句将x,y数组传递给plot之后,用关键字参数指定各种属性:

相关文章
最新文章
热点推荐